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A New Boundary Integral Approach to the
Determination of the Resonant Modes

of Arbitrarily Shaped Cavities
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Abstract—We present an efficient algorithm to determine the
resonant frequencies and the normalized modal fields of arbitrar-
ily shaped cavity resonators filled with a lossless, isotropic, and
homogeneous medium. The algorithm is based on the boundary
integral method (BIM). The unknown current flowing on the
cavity wall is considered inside a spherical resonator, rather
than in free-space, as it is usual in the standard BIM. The
electric field is expressed using the Green’s function of the
spherical resonator, approximated by a real rational function
of the frequency. Consequently, the discretized problem can be
cast into the form of a real matrix linear eigenvalue problem,
whose eigenvalues and eigenvectors yield the resonant frequencies
and the associated modal currents. Since the algorithm does not
require any frequency-by-frequency recalculation of the system
matrices, computing time is much shorter than in the standard
BIM, especiaHy when many resonances must be found.

I. INTRODUCTION

COMPUTER codes for the electromagnetic analysis of
arbitrarily shaped cavities are very important for many

applications, in particular for the design of interaction struc-
tures for particle accelerators. The design of accelerating
cavities results in complicated shapes, that are obtained carry-
ing on repeated analyses to optimize a number of parameters,
such as Q-factors, beam coupling impedances, higher-order-
mode spectrum, and so on. The interest in the calculation of
many normalized modes derives also from the important role
they play in the eigenvector expansion of the electromagnetic
field in a closed region. Some recent algorithms for the wide-
band analysis of waveguide junctions [1], [2] and for the
characterization of special accelerating structures [3] are based
on these expansions; their practical use requires the efficient
and reliable calculation of a number of modes in fairly short
times.

Available codes (see, for instance [4]–[7]) are usually based

on the finite element or the finite difference method. Since
these methods follow from the discretization of the field
equations in differential form, they require a 3-D mesh and,
consequently, a large memory allocation and a long computing
time. When the medium inside the cavity is homogeneous,
the number of the unknowns reduces dramatically using the
boundary integral method (BIM), that requires a surface mesh.
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Fig. 1. The geometry of the problem. (a) A resonant cavity; (b) the same
cavity embedded inside an exteroal resonator.

The BIM is based on the solution of the homogeneous integral
equation obtained by enforcing the electric-wall condition on
the electric (or magnetic) field produced by the unknown wall-

current ~ at an unknown frequency w [Fig. 1(a)]. The method
of moments (MoM) is used to transform the integral equation
into a matrix eigenvalue problem, whose eigenvalues Wr and

eigensolutions ~. represent the resonant frequencies and the
modal currents.

Usually, the unknown current is supposed to radiate in
free-space, so that the kernel of the integral equation is the
free-space Green’s function, that is a transcendental complex
function of the frequency. For this reason the standard BIM
results in the solution of a nonlinear eigenvalue problem,

which requires the search of the zeros of the determinant
of a frequency-dependent complex matrix [8]. Thus, each
resonance must be found through an iterative procedure based
on the repeated evaluation of the MoM matrix and of its
determinant at closely spaced frequencies in order to find the
zeros. Unfortunately, no automatic procedure exists for the
zero location and some a priori guess is unavoidable [9].
When many resonances must be found, not only may this
lead to overlong computing times, but also some zeros (and
consequently some modes) are possibly missed, especially in
case of degenerate or nearly-degenerate modes. Furthermore,
when normalized fields are needed, it is necessary to find
the field generated by each ~T at a very large number of
points to evaluate numerically the volume integral involved
in the normalization of the modes. All these drawbacks may
overwhelm the intrinsic advantages of using the BIM.

To overcome these shortcomings we follow a somewhat

different formulation. We consider the unknown current t?
acting, rather than in free-space, inside a spherical volume
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including the cavity and bounded by an electric wall [see
Fig. l(b)]. This is possible because, when w corresponds to one

of the resonant frequencies and J corresponds to the relative
modal current, the field outside V is zero and therefore it
does not matter what boundary condition we impose on the
exterior field. Though “exotic” at first glance, this approach
is convenient for two reasons. The most evident one is that
the Green’s function of the spherical resonator is real, thus
leading to real MoM matrices. The second reason—actually
the most important, though less apparent-derives from the
fact that the Green’s function of the spherical resonator can be

approximated very well by a rational function of the frequency
[10], a feature that permits us to find the eigensolutions

by solving a linear matrix eigenvahte problem. Therefore,
after a single evaluation of the MoM matrices, the resonant
frequencies and the modal currents for all the modes of interest
are found using well established and reliable procedures, that
do not require any a priori guess of the resonant frequencies.
Last but not least, the mode normalization is a trivial task,
since it is possible to express the volume integrals of the modal
fields as simple quadratic forms involving the eigenvectors and
the MoM matrices. The efficiency of this approach has been

already demonstrated in [11], where the same philosophy was
followed for finding resonant frequencies of 2-D resonators.

Some preliminary results were presented in two recent
symposium contributions [12], [13], where the method was
only briefly outlined: the present paper is devoted to the
comprehensive description of the algorithm (Section II) and
of its implementation in a computer code (Section III). Some
numerical results are reported in Section IV.

II. THE MATHEMATICAL FOFtMULATION

A. Representation of the Field

Let V be the volume of the cavity, filled by a medium
characterized by real, constant e and ~ [Fig. 1(a)]. Let us
consider a spherical volume Q bounded by an electric wall,
including V and containing the same mediu+m [Fig. 1(b)]. The
field generated in O by the current sheet J, defined over the
cavity wall S, can be represented as follows [10]:

where

● @ and ~ are the scalar and vector potentials

Coulomb gauge;
● k = w @ is the wavenumber;
● Fand F’ (7’ ‘ c S) are the position vectors

observation and source points, respectively;

(3)

in the

of the

“ a is the surface charge density (related to J+ by the

continuity equation);
.

● g and G are the Green’s functions for the quasi-static

scalar and vector potential in the spherical cavity;
● Km is the resonant wavenumber of the mth mode of the

spherical resonator and ;m is the corresponding electric
field vector, normalized according to J’n E’~ . Z’ rW := 1.

*
Functions g, G, and Zm are real and k-independent; the

expressions of ;m are found in many textbooks (e.g., [14,
++

pp. 306–307]); the expressions of g and G are known in

closed form and they are reported in the Appendix, Section
A, in a form slightly different from that found in [10],
best suited for numerical evaluation. Since the quasi-static

dyadic G has the same singularity as the Green’s function
for vector potential [15], the quasi-static term in (3) yields the
exact discontinuity of the tangential magnetic field across S;
therefore the high frequency correction expressed by the modal
series is continuous in !2. It is noted that this series converges
quite rapidly, its terms going to zero as KZ4. Therefore, if we

are interested in finding the resonant modes up to a maximum
frequency w~.x, we can truncate the modal series, neglecting
all the modes having resonant frequencies much larger than
w~.X. To guarantee that the truncation error does not affect

appreciably the overall accuracy of the algorithm up to the
highest frequency of interest, i.e., for k < k~a~, we shall
include in (3) all the modes with Km < ak~ax. Their number
will be denoted by ill. As a matter of fact, a value of a equal
to 2 is adequate in most cases, as evidenced by the results
shown in Section IV.

We approximate the current density as follows:

where qj, Ij are unknown coefficients and {Zj }, {dj } are two

sets of linearly independent vector basis-functions defined over
S and tangential to it. They satisfy -

v:”q~#o; V’.dj=os (5)

where V:. denotes the surface divergence with respect to the
primed coordinates. Since functions tij are solenoidal, the
charge density is

v: .7(?’)
C7(F’) = – “ 5 ov:”t(~’). (6)

jw Jzl

We assume that also {V: . tij } constitute a set of linearly

independent functions, in order to have m = O only if all qj
are zero. Due to (4) and (6) coefficients qj and ~j will be
referred to as charges and (solenoidal) currents, respectively.
Note that, in the limit w ~ O, the cument density is solenclidzd
in any case, as it must be.

Furthermore, we introduce the quantities
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that are related to the amplitudes of the spherical-cavity modes
excited by J: Coefficients am are considered as auxilia~
variables, which must be determined together with the charges
and the currents. Introducing the charges, the currents and the
auxiliary variables into (2), (3), we obtain

(9)

where ~m = V x & /~m represents the normalized magnetic
field vector of the rnth mode of the spherical resonator (see

[14, p. 308]). The closed-form expression of V x ~ is given
in the Appendix, Section A.

B. The Eigenvalue Problem

Denoting by l?tan the component of the electric field tan-

gential to S and using the Galerkin’s procedure, the electric
wall condition on S results in

/
J!?tan. tii dS = O (ill,..., Q) (lo)

s

J
dtan . tit dS = O (ill,..., q. (11)

s

These equations, together with the ill auxiliary equations (7),
can be cast into the matrix form

(12)K4a _ ~2K2a – #R’q – jk@jj R“I = O

Sq – k2~a – k2Vq – jk~ QI =0 (13)

kz~a + k2QTq -t jk~ WI= O (14)

where ~ denotes the transpose a = {al, a2, . . . . a~ }T, q =

{!71>!72> ””” ~qQ}~)~ = {h, ~2, ””” ,IP}T, K = diag{~m}

and, moreover, the entries of the matrices S, V, W, Q, R’, R“
are defined as follows:

%j =
/J

[V, . di(7)]g[V~ ~Z3(F”)] dS’ dS (15)
Ss

(16)

(17)

R:P =
/

c?m(~) . @P(F) dS (20)
s

where i,j=l, . . .. Q.p, q=l, . . .. Pandm=l . . . .. InIn
the derivation of (15) we used the Gauss’ theorem on the
closed surface S. All matrices are real and k-independent.
The square matrices S, V and W are symmetric, due to the

reciprocity of the Green’s functions g and G, and positive

definite (see the Appendix, Section C).
System (12)–(14) has nontrivial solutions only for particular

values of k, but not all these values are related to resonances
in the volume V. First, we note that for k = O an arbitrary 1
satisfies system (12)–(14), provided that a = O,q = O. These
solutions correspond to the solenoidal current distributions
that, at zero frequency, may exist on the cavity wall, They
are not related to resonances and therefore in the following
we assume k >0. Next, we observe that the fields associated
with any solution of the system ( 12)–( 14) satisfy naturally the
electric wall condition on the spherical surface, due to the

particular Green’s function we used. For this reason, together
with the resonant modes of the cavity, we expect to find also
the resonances of the complementary region fl – V, i.e., fields
that are zero inside the volume V and that differ from zero
in !2 – V. These solution are meaningless and they are easily
recognized as discussed in the following.

Since matrix TV is nonsingular, it is possible to use (14) to
express I as a function of a and q

–j/Z@ = kTV-l [@a+ QTq]. (21)

Introducing (21) into (12), (13) we obtain a generalized linear

eigenvalue problem of the type

(A - k-2B)z = O

where

[1a
x=

q

[

A = K2 _ RIIw–lR,,
Rt _ Q~-1~

& - R“W-lQ: V . QW-lQT 1
[1K4 O

B=o S.

Since matrices A and B are real symmetric and

(22)

(23)

(24)

(25)

definite
positive (see the Appendix, Section C), system (22) has
positive eigenvalues and real eigenvectors.

Recalling the range of validity of the approximation in-
volved in the truncation of the series in (3), we infer that
the only significant eigenvalues of (22) are those larger than
k~$X. They correspond to the first resonant frequencies UT =

kr@ of the cavity and the complementary region Q – V.
Each eigenvector x. yields directly the mode amplitudes and
the charges pertaining to the resonance; the corresponding
solenoidal currents are deduced from (21). It is pointed out
that no problem arises in finding degenerate modes. Once the
mode amplitudes, the charges and the solenoidal currents are
known, (8) and (9) yield the resonant fields fir, & everywhere
in Q. The comparison of the values of the field in a number of
points inside and outside V permits one to detect the external
resonances and to discard them, since they give rise to a field
that theoretically is zero inside V.
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C. Orthononrudity of the Modal Fields

In the Appendix, Section B, we show that

(26)

When both fields l?., l?. pertain to internal resonances, the
domain of the integral can be restricted to V, since the fields
are virtually zero in the complementary region. On the other
hand, standard library routines customarily yield orthonorrnal
eivenvectors satisfying

Equations (26) and (27) show that the resonant magnetic fields
obtained by (9) are orthogonal

(28)

(b)

Moreover, at resonance the electric and magnetic energy stored
in the cavity are equal, at least within the limits of the
approximation of the method of moments. Thus (28) permits

us to deduce the normalization factors to transform the+fiel~s
given by (8) -wd+(9) into th~ no~malized vectors g,, fir.

satisfying /v tr . ETdV = .fV W. . 7-LdV = 1.We have

E. = Cdr; 77, = –j/2@z. . (29)

D. Discretization of the Su#ace and Choice
of the Basis Functions

In our algorithm the surface S is modeled using triangular
patches. For simplicity we restrict our analysis to simply

connected cavities, bounded by a single conductor and not
containing thin conducting sheets. The advantage of using
triangular patches for representing complex surfaces is ap-
parent, and it is discussed in detail in a paper by Rao et
al. [16]. In that paper the authors introduce subdomain basis
functions (RWG’S b.f.), each one defined over two adjacent
triangles [see Fig. 2(a)]. RWG’s b.f. have become popular in
conjunction with the BIM, since they represent well behaved
piecewise-linear current distributions and give rise to zero-
mean, piecewise-constant charges. We construct the basis

functions tij and tij by a linear combination of the RWG’s

b. f., in order to retain the same features.
We obtain the generic function 03 combining the three

RWG’S b.f. that share the jth triangle [see Fig. 2(b)]. Thus
its support is constituted by the central triangle T$ and the
three adjacent triangles T“,k. The expression of ZJ is

where Aj and Aj,h denote the area of the central and the
adjacent triangles, respectively, and the other quantities are
defined in Fig. 2(b). The function ZJ represents a current
originating at the centroid of the central triangle and flowing
towards the external vertices; in the following they will be

(c)

(d)

Fig. 2. Vector basis functions suited to represent a cnrrent density .j” on
triangular patches. (a) a RWG’S basis function; (b) a stellate basis function; (c)
an annular basis function; (d) geometrical relationships showing that stellate
and annular basis functions can be regarded as combinations of RWG’s basis
functions.

referred to as ‘stellate b.f. .’ The surface divergence of the
stellate b.f. is given by

{-

1
in T3

V;.;j= 4 ~ (31)
.——

31i7,h
in Tj,h

This equation shows that the total charge existing on the
central triangle is counterbalanced by three equal charges
distributed on the adjacent triangles. It is possible to de~ine
as many stellate b.f. as the number lVt of the triangles, but
only ~t – 1 of them give rise to linearly independent cha~ge
distributions. In fact, we can assign independently the charge
only on iVt – 1 triangles, the last charge being constrained by
the total zero-charge condition.

Each function tij is obtained considering the RWG’s b.f.

relative to all the edges departing from the jth vertex (pivot

vertex); its support is constituted by all the triangles Tk sharing
the jth vertex [see Fig. 2(c)]. Functions tij are given by

(32)

where A~ is the area of T~, 1$ ) is the length of the ?xtelmal

edge and ~) is the unit vector along that edge [see Fig. 2(c)].
Functions tii~ represent piecewise-constant currents circulating
around their pivot vertices, and hence they will be named
‘annular b.f. .’ It is possible to define as many annular b.f.
as the number JVUof the vertices, but only N“ – 1 are linemly
independent.

Summing up, we define Q = Nt – 1 stellate b.f. and
P = NV – 1 annular b. f.; the total number of basis functions
we consider is P + Q = Nt + X, – 2. On the other hand>the
number of the original RWG’s b.f. is equal to the number N.
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of the edges that, in turn, is N, = Nt + NV – 2, according
to the Euler’s formula valid for any closed polyhedron. The
total number of the basis functions we use is therefore equal
to that of the RWG’S b. f., and the two sets of basis functions
are equivalent.

E. Evaluation of the Matrices

The overall accuracy and the numerical efficiency of the al-
gorithm depends largely on the fast and accurate evaluation of
the integrals (15 )–( 18), that requires a double integration over
the support of two generic basis functions, and thus involves
many pairs of triangles. Actually, taking into account (30)–(32)
and the geometric relationships indicated in Fig. 2(d), only two
distinct kinds of integrals must be considered, namely

11 =
H

g (L9’dS (33)
T, T.

Iz =
//

$,(?)G /7.(F’)dS’ dS. (34)
T. T.

In these equations T., T, are a generic pair of triangles and

~r, F’s are the position vectors of the field and source points,
relative to a generic vertex of Tr and T., respectively. Integrals
in the form 11 result after substituting (31) into (15), whereas

integrals in the form 12 are encountered in the evaluation of
coefficients ( 16)–( 18). It is worth noting that, since many pairs

of basis functions share the same pair of triangles, each one
of the integrals 11 and 12 is needed in the evaluation of many
matrix elements. Therefore, as pointed out in [16], it is by
far more efficient to carry out the evaluation of the matrix
elements using a scheme based on triangle-pair combinations,
rather than computing them naively. In a forthcoming paper
[17] we address the issue of achieving a good trade-off
between accuracy and computing time in the evaluation of
11 and 12. In that paper we discuss the Gaussian integration

scheme best suited for the numerical integration and we report,
for coincident T. and T,, the analytical expressions of the parts
of integrals 11 and 12 which derive from the singular terms of

g and ~ (see A-1, A-3).
The evaluation of the integrals (19) and (20) is less critical,

since the integrand functions are always bound and a sin-
gle surface integration is needed. Thus Gaussian quadrature
formulas are adequate.

III. THE COMPUTER CODE

The algorithm has been implemented in a computer code
named MORESCA (MOdes of RESonant CAvities). The input
consists of a formatted file containing the coordinates of
the vertices of the triangular patches and the topological
information about the mesh, together with the permittivities
of the medium and the frequency w~.X. The definition of
the geometry and the generation of the surface mesh may
be performed with the help of a commercial mechanical
CAD code (PATRAN), to which an interface is available.
The first step is the evaluation of the matrix coefficients:
integrals (33), (34) are evaluated for each pair of triangles
and then they are accumulated in the appropriate elements of
the matrices S, V, W, Q. A point that deserves some attention

is the calculation of the coefficients depending on the dyadic

~, whose expression is rather complicated, as evidenced by
(A-3)–(A-8). We found that the evaluation of the functions

~1, .fz, .fs, ~1, defined by (A-9)-(A-12), is quite long. On the
other hand, these functions are fairly smooth and depend only
on the two quantities h and u defined in the Appendix, Section
A; thus it is convenient the use of look-up tables to calculate
them. We found that only 200 entries per table are sufficient,
and that the use of the tables reduces the computation time of
the matrices V, W and Q by a factor of four,

The number Ill of the resonant modes of the spherical
region to be taken into account in the calculation of the
matrices R’ and R“ is determined automatically, considering
all resonances up to aw~,x. The value of the parameter a is
chosen by making a trade-off between accuracy and speed:
it is customarily set to 2, and it can be increased if a better

accuracy is needed (see next section).
The eigenvalue problem (22) is solved using the LAPACK

routines [18].
The selection of the resonances of the internal region V

is performed automatically. For each eigensolution of (22) the
code compares the magnitudes of the magnetic field calculated
at the centroid of a number of triangles, immediately inside
and outside the surface S. If the mean value of the external
field is much larger than that of the internal one, the solution is

discarded. The eigenvalues and the corresponding eigenvectors
are stored in a file to be used by post-processing programs
for calculating normalized fields, Q-factors, shunt impedances
and so on.

In the frequent cases where the cavity has one or more
reflection symmetries, it is possible to reduce the dimension
of the problem and the CPU time by considering a current
sheet defined only over the significant part of the cavity wall.
In these cases the modes belonging to different symmetry
classes are obtained solving different problems, one for each
class. Minor changes on the definitions of the basis functions

are needed, to impose the required symmetry to the current.
When calculating matrices S, V, W and Q, many intermediate

results, not depending on the particular class of symmetry, can
be stored and reused, with a substantial saving of CPU time.

IV. NUMERICAL RESULTS

The accuracy of the results is affected by the truncation
of the series in (3) and by the approximations done in

representing ~ and in discretizing S. Obviously, the finer is the
mesh, the better are these last approximations; furthermore, the
larger is the parameter a, the smaller is the truncation error.
To reduce the CPU time, however, the number of triangles
in the mesh and the value of a must be set to the minimum
compatible with the desired accuracy. To get a quantitative
insight on this topic, we performed many test calculations
on rectangular, spherical and cylindrical cavities to compare
the theoretical values of the resonant frequencies of a large
number of modes with those calculated with different meshes
and different a. We limit ourselves to report the results for a
rectangular cavity, since in this case the mesh size affects

the representation of ~ only, and not that of the surface.
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“.”

1.5 2.0 2.5 3.0 a

TABLE I
RESONANTFREQUENCIESOFTHE FIRST 12 MODESOFTHE
ELETTRA CAVITY. SYMMETRIES:e = EVEN; o = ODD

Symmetry Resonant Frequencies [MHz] \
Xvz Calculated I Measured IY o errors #
eeo 501.7:1 500.11 0.32

oee; eoe 747.61 753.44 -0.77
eoo:oeo 749.45 748.28 0.16

Fig. 3. Magnitude of the relative error e in the calculation of the first
15 resonant frequencies of a rectangular cavity for different values of the
parameter a. The dimensions shown are in cm.

,4

Electric field Magnetic field

(a)

4? 4?

Fig. 4. The ELETTRA accelerating cavity. The mesh shown is that used to
obtain the results of Table I.

The influence of a is shown in Fig. 3, which reports the
magnitude of the relative error in the determination of the
resonant frequencies of the cavity shown in the same figure.
The cavity was analyzed up to 10 GHz, and in this band a total
of 15 resonances are found, from the TE1O1 mode (resonating
at 4.799 GHz) to the TE103 mode (9.744 GHz). A rather fine
mesh, consisting of 94 triangles, was used to model one eighth

of the cavity wall (the symmetries were taken into account).
The values of a equal to 1.5, 2, 2.5, and 3 were considered,
that caused the number M’ for each symmetry class to be
about 25, 65, 125, and 210, respectively. As expected, the
overall accuracy increased with increasing a. Computing time
increased too; it took about 5.5, 8, 12, and 20 minutes on a
DIGITAL VAXstation 4000/60 to perform, for each values of
a, the calculations relative to all the symmetry classes. It is
apparent that a = 2, which yields an accuracy better than
1% for all the resonant frequencies, can be considered a good
compromise. The tests performed to check the influence of the

Electric field Magnetic field

(b)

Fig. 5. Arrow plots representing two resonant fields of the ELETTRA cavity.
(a) Fundamental mode; (b) first deflecting mode.

mesh size, not reported for brevity, showed that an accuracy

better than 0.3910is obtained if the dimensions of the edges do
not exceed one quarter of the wavelength at urn=.

We finally report the results of a test calculation, that refers
to the 500 MHz accelerating cavity shown in Fig. 4, and
used in the Trieste Synchrotrons Light Source ELETTRA. The
symmetry permitted us to model only one eighth of the surface,
using a mesh consisting of 165 triangles (see Fig. 4). The
wide-band analysis of this cavity evidenced the efficiency of
the code: in fact, only 30 minutes of CPU time were needed to
calculate the 90 modes up to 2 GHz, i.e., up to four times the
frequency of the fundamental mode (a = 2 was used). In Table
I the calculated resonant frequencies of the first few modes, for
which experimental data are available, are compared with the
measured values. The modes are classified according to their
even or odd symmetry with respect to the coordinate planes,
and rotationally degenerate modes are considered together. A
good agreement between calculated and experimental values is
obtained. The arrow plots of Fig. 5 represent the field patterns
of the dominant (accelerating) mode and of the first deflecting
mode. For the accelerating mode we calculated a Q-factor
equal to 44300 (assuming copper wall) and a value of Rs /Q
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(the ratio of the shunt impedance to the Q-factor) equal to
175.6 !2. Also these values compare well with the measured

ones, which are Q~,., = 42000 and (Rs/Q)~,as = 174.50.

V. CONCLUSION

We presented an efficient algorithm, based on the bound-
ary integral method, for the mode analysis of arbitrarily
shaped resonators. Its peculiarity lies in the fact that all the
resonances of interest are obtained solving a matrix linear
eigenvalue problem. Computing time is moderate, even when
many resonances must be found; no a priori guess of the
resonant frequencies is required and no problem arises in

the case of degenerate modes. Finally, the normalized fields

are obtained with no additional computational effort: thus the
algorithm is particularly attractive when the fields must be
post-processed to evaluate some global parameters used in the
characterization of accelerator cavities (e.g., Q-factors, beam
coupling impedances, etc.) or, in general, when the resonant
fields are used in modal expansions.

APPENDIX

&
A. Expressions for Functions g and G

.
The expressions for g and G can be written in a compact

form referring them to the coordinate system reported in
[10], i.e.\ considering the unit vectors 7’0 = F’/IF’, F ~ =
F ‘/lo’’’/, & = F’ ~ x 7’.//7’ ~ x 7.1, S’0 = & x F’Oand
.? ~ = to x 7’~. Denoting by a the radius of t~e sphere and by
~ the angle between F’+and F’t, we define: R = ? – F‘, r =
Ifl, r’ = IF ‘I, R = lRl, h = #/a2,~ = 1- r2/a2, <’ =
1 – r’2/a,2, u = COSIJJand v = VI’-.

The function g is

1 1
—.fog = 47rR – 4n-a

(A-1)

where f. = 1//1 – 2hu + h2.

The dyadic G has the following eigenfunction expansion:

(A-2)

.
The closed form of G can be found in [10], and it is
reported here in a form that is more convenient for numerical

evaluation. We have

(A-3)

-0
where G is a regular dyadic that, thanks to the choice of the
reference system, has only five nonzero components

They have the following expressions

G:,, = fo/(47ra)[(15 + h2 – 3( – 3&’)fl + f’

+ (h – 3u)/4 – f:(f + &’)(h – u)/4] (A-4)

G:,, = –vf’f:/(4Ta)[(2 – f/2)f3 + f,]

– vfo/(16~a)[3 – (~+ <’)f~] (A-5)

G:,, = <f’f~/(4na) [3.fI/~0 – u(fs + f~)

-fo(h - u)/41 -fo/(8~a)[u+h~2f;l (A-6)

G;, = fo/(4ra)[<f’fo(f3 + fd – 1/2] (A-7)

G:., (r, r’) = –G~~, (r’, r) (A-8)

where

,fl =
[ (&fO-h(,ih) ~+~ )1 (A-9)

~2 = l/(h2fo)[ln(l/,fo + h - u) - ln(l - u) - h.fo]

(A- 10)

fs = l/[4v2h2(l + h) ff]{(l + u)(1 + h – 2hu)fo

- [(1 - u)F + 2ul?]/sin~} (A-n)

j,= l/(~2h2f;)[l + (hu - l),fo] (A-12)

and F = F(fl, K), E = E(P, K) denote the incomplete
elliptic integrals of the first and of the second kind, respec-
tively, having argument @ = arcsin 2 fi/( 1+ h) and modulus
K = ~-.

The eigenfunction expansion of V x G is

and its closed-form expression, deduced from (A-3), is

Vx & – 1
—2X f’+vx 6°
4nR3

(A- 14)

where

VX Go= ,f~/(4nar’){v(l – f’)foFo&

+ hv(fo – .fq)~oF~

+ [<’hf~ – (1 – f’)(h – u)~o];o&

+ [<’(1/fo + hufJ + (hu – l) fo]&F~}. (A-15)

B. Derivation of (26)

Let us consider two magnetic fields ~~ and fip in 0,

produced by the current densities & and $ distributed on S

(in the foll~wing t~e subscripts a and ~ will refer to quantities
related to ~a and JP, respectively). Taking into account ( 1)–(3)
and (7) we have

l-=
/

ii:.17p dv=zl+z2+z3+z4 (A-16)
n



ARCION1 et al.: NEW BOUNDARY INTEGRAL APPROACH TO THE DETERMINATION OF RESONANT MODES

REFERENCES

1855

where

and Z3 is the conjugate of Z2 with a and,6 interchanged. From
*

the eigenfunction expansion of V x G (A-13) we have

Thus, taking into account the orthonorrnality of vectors ii,

using (A-2) and substituting (4) and (16)–( 18), we have

Introducing (21) into the above expressions, (A- 16) becomes

Z = wawp[aJT(K2 – R“W-l@)aP

+ a~T(R’ – R“W-1QT)q9

+ qb(@ – QW-lZ)W
+ q:T(v – QW-lQT)~p]

or, taking into account (23), (24)

When $~, k~ and Zp, kp are eigensolutions of system (22),
the right-hand side of (A-20) can be transformed using (22),

and (26) is obtained.

C. Positive Definiteness of Matrices S, A, V, W

The electrostatic energy pertaining to a surface charge
density ~ distributed on S is given by UE = 1/2 $S d dS.
Taking into account (2), (6), and (15), we have UE =

(1/2c)q@q. Therefore the matrix S is positive definite, since
UE is always -positiv~

If we put H. = H@ = E in (A-16), Z and Z1 become

positive quantities, and (A-20), (A-17) represent the quadratic
form associated to the matrices A and [{W, Q}, {QT, v}],
respectively. Therefore matrix A is positive definite, together
with matrices V and W, that are principal minors of a positive
definite matrix.
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